

スリット応力解放法とは ・主に、PC桁等の一次応力場における現有 応力を測定する技術。 ・応力解放法は、岩盤内に作用している応力 を測定する技術として実績が多数あり、多く は、コアリングにより実施。 これをPC構造物に適用。 コアリングをスリットに変更

PC構造物の現有応力を測定する スリット応力解放法の開発

PC橋の残存プレストレス量の測定方法

橋梁のPC鋼線の破断

コア応力解放法 コア削孔する前後のコア周辺部 の解放ひずみをひずみゲージで 計測し、計測した解放ひずみより 現有応力を推定する方法

全視野ひずみ計測装置を用いたスリット応力解放法					
ひずみゲージ計測の問題					
 ・表面付近の粗骨材の影響 ・配線や計測器設置の問題 ・切削溝周辺部における大きな解放ひずみを正確に 計測できない 					
解決手段					
ラインセンサスキャナタイプ全視野ひずみ計測装置					
〔特徴〕					
 ・撮影画像内の任意の位置でひずみの多点計測が可能 ・ひずみ計測精度が高い ・削孔時には計測装置を取り外すことができ、配線の問題が無い 					

(f) 画像撮影 (変形画像)

FEM解析				
解析条件	4			
解析タイプ	2次元FEM線形解析			
材料条件	ヤング係数E (N/mm ²) 各試験体のヤング係数 ポアソン比 ν 各試験体のポアソン比			
要素タイプ	8接点四角形平面応力要素(1mm×1mm)			
荷重条件	両側面より等分布荷重q=10N/mm ² をX方向に与える。			
拘束条件	X=151, Y=0(中心位置) … X, Y方向固定Y=0 … Y方向固定			
120	単位(mm)			

見有作用応力の推定結果					
項目	No.1	No.2	No.3		
下縁応力度設計値(N/mm²)	9.54				
現有応力推定値(N/mm²)	9.24	9.59	6.13		
誤差(N/mm ²)	-0.30	0.05	-3.41		
誤差(%)	-3	0.5	-36		

計測位置No3.はひび割れによって応力が再配分され、減少した ものと考えられる

平均誤差(No.3を含まない) -0.12N/mm²

現有応力の推定結果		_	
項目	G4桁	G5桁	
主桁下縁応力度(N/mm ²)	4.11		
現有応力推定値(N/mm ²)	3.49	4.71	
誤差(N/mm ²)	-0.62	0.60	
設計プレストレス(N/mm ²)	13.56		
推定プレストレス(N/mm ²)	12.94	14.16	

平均誤差(下縁応力度) -0.01N/mm²

ASRによりひび割れが生じている桁でも、プレストレ スが十分に残存していることが確認された。

国交省長崎河川国道事務所管理 撤去前

単純ポストテンション方式PCT 桁橋 下フランジ、ウェブ、上フランジにて作用して いる応力推定を行った

ポストテンションPC単純合成T桁橋 G4、G5主桁の橋軸方向および橋軸直角方向 に作用している応力推定を行った

PCアーチ橋: 大分県

1989年の竣工当時は、日本最長のアーチ 支間(235.0m)を有するコンクリートアーチ橋、 応力解放法10箇所以上実施した

中央ヒンジ橋: 長野県

橋長180mのPC3 径間連続有ヒンジラー メン箱桁橋、中央ヒンジの異常たわみの 原因究明のため応力解放法を実施した

